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Shapes of river networks and leaves:
are they statistically similar?

Jon D. Pelletier'” and Donald L. Turcotte’

' Division of Geological and Planetary Science, Mail Stop 150-21, California Institute of Technology, Pasadena, CA 91125, USA
2Department of Geological Sciences, Snee Hall, Cornell University, Ithaca, NY 14853, USA

The structure of river networks is compared with the vein structure of leaves. The two structures are
visually similar at the smaller scales. The statistics of branching and side branching are nearly identical.
The branching structure of diffusion-limited aggregation clusters is also similar and can provide an expla-
nation for the structure of river networks. The origin of the self-similar branching and side branching of
the vein structure in leaves is not clear but it appears to be an optimal network in terms of transporting
nutrients to all parts of the leaf with the least total resistance.
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Fractal trees have been associated with a wide variety of
naturally occurring networks. Examples include river
networks, actual plants and trees, root systems, bronchial
systems and cardiovascular systems. Before the intro-
duction of fractals by Mandelbrot (1967), empirical
studies of drainage networks (Horton 1945) had given
power-law relations between stream numbers, stream
lengths, drainage areas and stream slopes.

Peckham (1995) developed a software routine for
obtaining river networks from digital elevation models
(DEMs). Seven typical drainage networks obtained using
this routine are given in figure 1. The routine also gives a
variety of data on networks, including numbers and
lengths of streams and drainage arcas. We have also used
this routine to obtain the vein structures of leaves. Two
examples are given in figure 2. The vein structure of a
whole mature leaf and a side lobe of a leaf of Sorbus
hybrida (Rosaceae) were obtained from greyscale images
given by Merrill (1978). The leaf architecture of the whole
leaf has a well-defined regularity at the largest scale but
becomes quite random at smaller scales as shown by the
vein structure of the side lobe. The small-scale structure
of the leaf strongly resembles the river networks in
figure 1.

To compare leaves with drainage networks it is neces-
sary to quantify the branching structures. The original
branch-ordering taxonomy for fractal trees was developed
as a stream-ordering system in geomorphology by
Horton (1945) and Strahler (1957). Streams on a standard
topographic map with no upstream tributaries are
defined to be first order (2 =1). When two first-order
streams combine they form a second-order (i=2)
stream. When two second-order streams combine, they
form a third-order (¢ = 3) stream, and so forth. Horton
(1945) also introduced the bifurcation ratio

Ni

R, = 1
b M+1’ ()
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and the length-order ratio

R =", 2)

T
where N, is the number of streams of order ¢ and r; is the
mean length of streams of order i« Emprically it was
found that R, and R, were nearly constant, independent
of order, for actual drainage networks.

With the introduction of the fractal dimension D as the
power-law scaling exponent between number and length,
it was recognized that the fractal dimension of a stream
network is given by

InR,
D= IR, (3)
If a self-similar network is area filling we must have
D=2

An important aspect of the networks illustrated in
figures 1 and 2 is side branching. That is, some first-order
streams intersect second-order, third-order, and all
higher-order streams. Similarly, second-order streams
intersect third-order and higher-order streams, and so
forth. To classify side branching Tokunaga (1978) extended
the Strahler (1957) ordering system. A first-order branch
intersecting a first-order branch is denoted ‘11’ and the
number of these branches is N, a first-order branch
intersecting a second-order branch is denoted ‘12’ and the
number of such side branches is Ny, a second-order
branch intersecting a second-order branch is denoted ‘22’
and the number of such branches is Ny, and so forth. The
total number of streams of order 7, V,, is related to N; by

No=Y" N (4)
J=1

for a fractal tree of order 2. The branch numbers N, i<,
constitute a square upper-triangular matrix. This class of
fractal trees can also be quantified in terms of branching

ratios 7. These are the average number of branches of
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Figure 1. Drainage networks analysed: (¢) Kumaun;

(b) Loess Plateau, Shanxi Province, China; (¢) Schoharie
Creek, New York; (d) Nepal; (¢) Kentucky River;

(f) Mississippi River; and (g) Bhutan.

order : joining branches of order ;. Branching ratios are
related to branch numbers by
N,

Tii = le (5)

J

Again the branching ratios T;; constitute a square, upper-
triangular matrix.

We now define self-similar trees to be the subset of trees
for which 7;,,; = T, where T} is a branching ratio that
depends on £ but not on ¢ Tokunaga (1978) introduced a
more restricted class of self-similar, side-branching trees
by requiring for self-similarity of side branching that

T, = ac*". (6)

This is now a two-parameter family of trees and we will
define fractal trees in this class to be Tokunaga trees.

A fourth-order Tokunaga tree is illustrated in figure 3a.
The corresponding branch-number and branching-order
matrices are given in figure 3b,¢. For this construction we

have R, =2 and N, =1, Ny =3, N, =11, and N, = 43.
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Figure 2. Vein structure of a mature leaf in Sorbus L.
(Rosaceae) obtained by using a scanning routine on greyscale
images given by Merrill (1978): (a) whole leaf; (4) side lobe.
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Figure 3. (a) Fourth-order Tokunaga fractal tree. (4) Branch-
number matrix. (¢) Branching-ratio matrix.
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Figure 4. Plot of the average number of branches of order : as
a function of order z. () Results for the seven drainage basins
given in figure 1. The data correlate with N o 7~%%7; thus

R, = 10°%7 = 4.68. (b) Results for the two leaf networks given
in figure 2. The data correlate with N o i7%5; thus

Ry = 10" =4.47.

The bifurcation ratio R, is not constant but approaches 4
for large i-values. Thus from equation (3), D approaches 2
for large values of i. We also find that T, = Ty,
=T34=T1T, =1, T\3=Ty,=2 and T, =4, so that
from equation (6) we have ¢ =1 and b = 2.

We now quantify the branching networks illustrated in
figures 1 and 2. Peckham (1995) has determined
branching-ratio matrices for the Kentucky River basin in
Kentucky and the Powder River basin in Wyoming. Both
are eighth-order basins with the Kentucky River basin
having an area of 13500km? and the Powder River
basin an area of 20 181 km?. For the Kentucky River basin
R, =46 and R, =2.5; for the Powder River basin
R,=4.7 and R, =2.4. From equation (3) the corre-
sponding values of the fractal dimension are D = 1.67 and
D =1.77, respectively. Good agreement with the Toku-
naga relation (6) was obtained, taking ¢ = 1.2 and ¢ = 2.5.

For the river networks illustrated in figure 1 the
number-order statistics are given in figure 4a. We find
R, = 10%%7 = 4.68. The length-order statistics are given
in figure 5a. We find R, = 10°% = 2.24. Thus from
equation (3) we have D = 1.91. The mean values of the
branching ratios 7, are given in figure 6a4. Quite good
agreement with the Tokunaga relation (6) is obtained,
taking ¢ =158 and ¢=2.44. In addition, we have

Phil. Trans. R. Soc. Lond. B (2000)
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Figure 5. Plot of the average branch length of order i as a
function of order z. (a) Results for the seven drainage basins
given in figure 1. The data correlate with r o< i~%°; thus

R, = 10°% = 2.24. (b) Results for the two leaf networks given
in figure 2. The data correlate with r o« i7*%*; thus

R, =10"" =2.19.

plotted the relationship between length and area aver-
aged for each Strahler order in figure 7a. The results
indicate that L o< A? with ¢ nearly equal to one-half. This
relationship is known as the Hack law (Hack 1957).

For the leaves illustrated in figure 2 the number-order
statistics are given 1in figure 4b; we find that
R, =10%% = 4.47. The length-order statistics are given
in figure 5b; we find that R, = 10°* = 2.19. Thus from
equation (3) we have D = 1.91. The mean values of the
branching ratios 7, are given in figure 66. Again quite
good agreement with the Tokunaga relation (6) is
obtained at the smaller scales, taking « =1.23 and
¢ = 2.34. The same relationship between length and area
observed for drainage networks is observed for leaf veins
(figure 75).

At larger scales (large k) where there is regularity in
the side branching, the statistics of side branching deviate
from the Tokunaga relation (6). Both in terms of number-
length statistics and in terms of side-branching statistics
we find that drainage networks and the vein structure of
leaves at the smaller scales are very similar. This confirms
the visual similarities between figures 1 and 2. An obvious
question 1s, why do drainage networks and leaves develop
a Tokunaga branching structure? We first note the simila-
rities with diffusion-limited aggregation (DLA).
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Figure 6. Plot of the Tokunaga branching ratios 7; as a
function of k. (a) Results for the seven drainage networks
illustrated in figure 1. The data correlate with equation (6),
taking « = 1.58 and ¢ = 2.44. (b) Results for the two leaves
illustrated in figure 2. The data at lower order correlate with
equation (6), taking ¢ = 1.23 and ¢ = 2.34.

The concept of DLA was introduced by Witten &
Sander (1981). They considered a grid of points on a two-
dimensional lattice and placed a seed particle near the
centre of the grid. An accreting particle was randomly
introduced on a ‘launching’ circle and was allowed to
follow a random path until (i) it accreted to the growing
cluster of particles by entering a grid point adjacent to the
cluster, or (i1) it wandered across a larger ‘killing’ circle.
The resulting sparse, tree-like structure has been taken as
an excellent representation of dendritic growth patterns
found both in nature and in industrial applications
(Vannimenus & Viennot 1989).

Ossadnik  (1992) has considered the branching
statistics of 47 off-lattice DLA clusters each with 10°
particles. On average, the networks were I1lth-order
fractal trees. The average bifurcation ratio for the
clusters was found to be R, =5.154£0.05 and the
average length-order ratio R, = 2.86 £ 0.05; from equa-
tion (3) the corresponding fractal dimension is
D =1.56. The DLA clusters are much less dense than
the drainage networks or leaf vein networks, and thus
the fractal dimension for DLA clusters are considerably
smaller. In order to analyse the branching statistics of
DLA clusters, Ossadnik (1992) used the ramification
matrix introduced for DLA by Vannimenus & Viennot
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Figure 7. Plot of the length versus drainage area averaged for
each Strahler order i. (a) Results for the seven drainage basins
given in figure 1. The data correlate with L o« 4%, () Results
for the two leaf networks given in figure 2. The data correlate
with L o¢ 4% also.

(1989). The ramification matrix is entirely equivalent to
the branching-ratio matrix introduced by ‘Tokunaga
(1978). In terms of the Tokunaga trees defined in
equation (6) it is found that ¢ =1.5 and ¢=2.7 for
DLA trees. Thus DLA clusters, river networks and leaves
all exhibit Tokunaga side-branching statistics.

A wide variety of models have been proposed for drain-
age networks. These have been reviewed by Rodriguez-
Iturbe & Rinaldo (1997) and by Turcotte (1997). Masek &
Turcotte (1993) proposed a model for headward migra-
tion of drainage networks based on DLA. This model
yields Tokunaga statistics which are in good agreement
with equation (6). Peckham (1995) has shown that there
are large discrepancies between river network statistics
and random growth networks such as that proposed by
Shreve (1969).

Some authors (Rodriguez-Iturbe & Rinaldo 1997) have
shown that river networks are optimal networks for trans-
porting run-off with the minimum stream power exerted
on the landscape. Because the structures of leaves and
river basins are statistically similar we can conclude that
evolution has found an optimal structure for transporting
nutrients to and from cells in the leaf by the trial and
error process of mutation and natural selection.
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